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What is stochastic stability ?

X(t) is a stochastic system X(t) (e.g. number of customers waiting.)
Stability ~ X(t) does not go to infinity as t goes to infinity.

Stability is a weak property
@ needed to have a stationary regime.

@ no bound on waiting time.

This is stable.
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Stochastic stability on an example

M/M/1 queue :
@ Arrival rate of customers \.

@ Departure rate p.
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Mathematical definition
Definition (stability)
Let X(t) be a Markov chain on a discrete space S.

@ X(t) is stable if X(t) is positive recurrent (has a stationary
distribution).

Example :

e The M/M/1 queue is stable iff \/p < 1.

@ A stable system can oscillate.

This is stable.
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Stability : a difficult problem

Example : reentrant line with FIFO disciplines. Rrysko Stolyar (1992), Dai (1995).
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Outline

@ Classical tools for queuing networks
@ Lyapounov techniques
o Fluid limits
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Foster’s Criteria

Idea : average decrease of the norm for large state implies stability.

Foster’s Criterion (taken from Bramson [2008])

Let X(n), be a Markov chain on which all states communicate. If there is
a finite space C s.t.

o Ef||[X(n+1)| | X(n) =x] < oo forall xe C

o E[||X(n+1)|| | X(n) =x] <|x|| — € for x & C.
Then, X is stable.

>
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Foster’s Criteria : example and limits

Example : M/M/1 queue (arrival w. proba. A, departure w. proba. (.)
o E[|X(n+1)|X(n)=0]= X< o0.
o E[|X(n+1)|X(n)=x]=x+X—pif x>0.

Thus : A/p implies stability.

(in that case, there exists simpler methods).

Powerful tool but :
@ Hard to find a Lyapounov

@ Little intuition on speed of convergence.
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Fluid limit : definition and example
Consider XN(t) :

@ Scale the initial state by N.

o Scale the time by N : XV(t) = X(N - t).

A fluid limit is a limit of XV(t) as N goes to infinity.
Example : M/M/1 queue.

e X(t) € N = number of packets in queue.
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Fluid limit and stability of queing networks.
Bransom (2008) (generalization of Dai (1995)) showed that

Fluid stability implies stochastic stability for HL.
For head-of-the-line queuing networks :

@ Fluid limits are described by differential equations.
@ If dc such that all solutions of the ODE satisfies :
X(t)=0 fort>c||X(0)],

then the system is stable.

The converse might false (see Bramson (1999))
However :

o
@ restricted to queuing models.

e Models not valid, e.g. wireless networks (interferences).
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e Our approach : drift and differential inclusions
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Drift and stochastic approximation

Recall - fluid imi @ behavior when space and time is scaled by N :
ecall : tfluia Imit XN(t—i-%):lX(N-t)
The drift of a discrete time Markov chain X(n) is :
g(x) =E[X(t+1) — X(¢) | X(t) = x].

We have X(t+1)=X(t) + g(x) + noise.
~~

drift E[]=0

XN(t + %) = XN(t)+ % (g(N - XN(t)) —i—noise) . (1) J

(1) is a stochastic approximation algorithm.
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Convergence of stochastic approximation

XN(t—l—%):XN(t)—i—%(g(N-XN(t))—i—noise). (1)J

When limy_ g(N - x) = f(x) is lipschitz continuous :

(] XN satisfies the ODE X = f(X) (started with Robbins and Monro (1951), see also Benaim

(1999).)
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Discontinuous drifts

However, most system have discontinuous drift. Example : M/M/1 queue.

The drift is :
_f A=p ifx>0.
f(x)_{ A if x=0.

Problem : x = f(x) has no solutions on [0; co) starting from x = 1.

Solution : transform the ODE into a differential inclusion (DI) :
: . f A=p ifx>0.
x € F(x) with F(X)—{ DA if x = 0.

The DI has a unique solution.
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Construction of set valued drift

If f is the drift, then we define F :

F(x) = convex_hull <Ii?n g(N-xV) | xN — x) .

Example : M/M/1.

_3 x>0 -3 if x> 0.
f(X)z{ L7 ifxeco  FRO=9q [£3:7) ifx=0
' - +.7 if x<0.
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Convergence
Theorem (G, Gaujal 10)

Assume that f is bounded, that the variance of the noise is bounded and
that F is the set-valued drift. If XN(0) — x, then for all T :

inf  sup HXN(t)fx(t)HQO.
XES(x0) 0<t<T

where S(xp) = set of solutions of x € F(x) with x(0) = xp.

@ Generalization of decreasing step-size studied by Benaim et al. (06).
@ Similar results obtained by Faure and Roth (10).

In words : for any drift f, fluid limits are characterized by the DI x € F(x).

Theorem (G, Gaujal 10)

If the DI associated with f is stable, then the stochastic system is stable. J

Stochastic stability
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o Examples : wireless networks and opportunistic routing
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Opportunistic routing in wireless networks

@ An antenna serves mobiles.

@ Channel condition is varying with time (fading).

Mobile 1

Antenna Fading Mobile 2

Mobile 3

At each time step, the antenna chooses which user to serve :

@ knowing the channel condition of everyone.

Goal : find a “good” policy for serving the users.
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Opportunistic routing, flow-level model rom (ayesta et a1 10)

@ Mobiles can be divided in K classes.
o Users of class k arrive at rate \g
@ At each time step :

e a mobile of class k has a channel condition (i.i.d).
o The antenna chooses one user j. It is served with rate
1(class, channel_condition)

A1

? H1i

Ak -

—_—

o X(t) = (Xi1(t)...Xk(t)) = # users of each class in the system.

) @ What is the stability condition of a policy ?
Questions : ] )
@ Is there a maximum stable policy ?
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Stability condition

Theorem (Ayesta et al.)

K

Ak
There exists a policy that stabilize the system iff Z e < 1
k=1""k
Consider the policy :
@ Serve in priority users that are in their best state.
@ Serve in priority class 1 users, then class 2, etc.
@ Any tie breaking rule.
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Drift of the stochastic system

Example with 2 classes of users and 2 channel conditions.
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drift is complex.

@ When x is large, there is a user in its best state with proba. ~ 1.

If a user of class k in its best state is served, the drift is :

f(X) = ()\1; .. .7)\k—1,)\k — ,U,Tax,)\kJrl, ey AK) = V.
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Drift of the stochastic system

Example with 2 classes of users and 2 channel conditions.
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@ When x is large, there is a user in its best state with proba. ~ 1.

If a user of class k in its best state is served, the drift is :
f(X) = ()‘17 SERE) )\kfla >\k - MTaX,)\k+1, Cee )‘K) = V.
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Drift of the stochastic system

When x is small, the
drift is complex.

@ When x is large, there is a user in its best state with proba. ~ 1.
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Example with 2 classes of users and 2 channel conditions.

——mm e e e e e e e e e Ot =

PR

15[, cee e == === m oy

10 [ e e e S ST

5 J e S
JE I

i N N N S N N N N NN NS

o] 5 10 15 20 25

If a user of class k in its best state is served, the drift is :

F(x) = (M, ..

G AK=1 Ak = T A1, -5 AK) = V.
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Stability of the fluid limit
For, x “large”, the drift is :

The drift f is
AN

~
\

/)

.

@ The ODE corresponding to f has no solution.
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Stability of the fluid limit
For, x “large”, the drift is :

The drift f is
AN

~
\

The set-valued drift F

N conv(vy, V)
N
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N\
~

L

/)

@ The ODE corresponding to f has no solution.
@ The DI can be solved in closed form.

K
A
Therefore, if Z m’;X < 1, then :
k=1"k

@ The solution of the DI converges to 0.
@ Thus, the opportunistic scheduling is stable.

Stochastic stability Classical tools Differential inclusions Examples Conclusion

References

24/28



Limit of the approach

The set of solution of the Dl is a super-set of the fluid limits.
Example : three weakly coupled queues (Borst et al. 2008).
@ Arrival rate at queue i is \;

@ X;,Xj, Xy are the numbers of customers present in queues
i #j# ke{1,2,3}, a customer of queue i is served with rate ¢;(x)

aj ifXj:XkZO
¢,~(x) = ajj if Xj > 0,xc =0
1 if x; > 0,x >0,

where a; > a;; > 1.
Stability conditions given by the convex hull (up to a permutation of 1,2,3) :

@ A1 <1land Ay < A1+ ax3(1 — A1) (also necessary conditions).
@ + a linear equation on A3 stronger than necessary.

The DI has multiple solutions.

Examples 25/28
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© Conclusion
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Conclusion

Stochastic approximation to construct fluid limits.
o Differential inclusion to handle discontinuity.
o Constructive definition of the limit.

@ Facilitate the computation of closed-form behavior.

Other applications :
e Study quantitative properties (mean field approximation).
o Need for speed of convergence (OSL, R-OSL).
@ Hitting time and stochastic approximation.
e Extinction time.
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