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What is stochastic stability ?

X (t) is a stochastic system X (t) (e.g. number of customers waiting.)

Stability ≈ X (t) does not go to infinity as t goes to infinity.

Stability is a weak property

needed to have a stationary regime.

no bound on waiting time.

This is stable.
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Stochastic stability on an example

M/M/1 queue :

Arrival rate of customers λ.

Departure rate µ.

λ/µ = 2 λ/µ = .8

Unstable stable
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Mathematical definition

Definition (stability)

Let X (t) be a Markov chain on a discrete space S.

X (t) is stable if X (t) is positive recurrent (has a stationary
distribution).

Example :

The M/M/1 queue is stable iff λ/µ < 1.

A stable system can oscillate.

This is stable.

Stochastic stability Classical tools Differential inclusions Examples Conclusion References 6/28



Stability : a difficult problem

Example : reentrant line with FIFO disciplines. Rybko,Stolyar (1992), Däı (1995).

m1 m2 m3 m4 m5 m6

.001 .897 .001 .001 .001 .899

The load on each server is ρ1 = ρ2 = .90 but :
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Foster’s Criteria
Idea : average decrease of the norm for large state implies stability.

Foster’s Criterion (taken from Bramson [2008])

Let X (n), be a Markov chain on which all states communicate. If there is
a finite space C s.t.

E [‖X (n + 1)‖ | X (n) = x ] <∞ for all x ∈ C

E [‖X (n + 1)‖ | X (n) = x ] ≤ ‖x‖ − ε for x 6∈ C .

Then, X is stable.
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Foster’s Criteria : example and limits

Example : M/M/1 queue (arrival w. proba. λ, departure w. proba. µ.)

E [|X (n + 1)|X (n) = 0] = λ <∞.

E [|X (n + 1)|X (n) = x ] = x + λ− µ if x > 0.

Thus : λ/µ implies stability.
(in that case, there exists simpler methods).

Powerful tool but :

Hard to find a Lyapounov

Little intuition on speed of convergence.
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Fluid limit : definition and example

Consider XN(t) :

Scale the initial state by N.

Scale the time by N : XN(t) = X (N · t).

A fluid limit is a limit of XN(t) as N goes to infinity.
Example : M/M/1 queue.

X (t) ∈ N = number of packets in queue.

N = 10 N = 30
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Fluid limit and stability of queing networks.

Bransom (2008) (generalization of Däı (1995)) showed that

Fluid stability implies stochastic stability for HL.

For head-of-the-line queuing networks :

Fluid limits are described by differential equations.

If ∃c such that all solutions of the ODE satisfies :

X (t) = 0 for t > c ‖X (0)‖ ,

then the system is stable.

The converse might false (see Bramson (1999))
However :

restricted to queuing models.

Models not valid, e.g. wireless networks (interferences).
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Drift and stochastic approximation

Recall : fluid limit
behavior when space and time is scaled by N :
XN(t + 1

N ) = 1
N X (N · t)

The drift of a discrete time Markov chain X (n) is :

g(x) = E [X (t + 1)− X (t) | X (t) = x ].

We have X (t + 1) = X (t) + g(x)︸︷︷︸
drift

+ noise︸ ︷︷ ︸
E[·]=0

.

XN(t +
1

N
) = XN(t) +

1

N

(
g(N · XN(t)) + noise

)
. (1)

(1) is a stochastic approximation algorithm.
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Convergence of stochastic approximation

XN(t +
1

N
) = XN(t) +

1

N

(
g(N · XN(t)) + noise

)
. (1)

When limN→∞ g(N · x) = f (x) is lipschitz continuous :

XN satisfies the ODE ẋ = f (x). (started with Robbins and Monro (1951), see also Benäım

(1999).)
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Discontinuous drifts

However, most system have discontinuous drift. Example : M/M/1 queue.
The drift is :

f (x) =

{
λ− µ if x > 0.
λ if x = 0.

Problem : ẋ = f (x) has no solutions on [0;∞) starting from x = 1.

Solution : transform the ODE into a differential inclusion (DI) :

ẋ ∈ F (x) with F (x) =

{
λ− µ if x > 0.
[λ− µ;λ] if x = 0.

The DI has a unique solution.
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Construction of set valued drift

If f is the drift, then we define F :

F (x) = convex hull
(

¯lim g(N · xN) | xN → x
)
.

Example : M/M/1.

f (x) =

{
−.3 if x > 0.
+.7 if x ≤ 0.

F (x) =


−.3 if x > 0.
[−.3 : .7] if x = 0
+.7 if x ≤ 0.
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Convergence

Theorem (G, Gaujal 10)

Assume that f is bounded, that the variance of the noise is bounded and
that F is the set-valued drift. If XN(0)→ x, then for all T :

inf
x∈S(x0)

sup
0≤t≤T

∥∥∥XN(t)− x(t)
∥∥∥ P−→ 0.

where S(x0) = set of solutions of ẋ ∈ F (x) with x(0) = x0.

Generalization of decreasing step-size studied by Benäım et al. (06).

Similar results obtained by Faure and Roth (10).

In words : for any drift f , fluid limits are characterized by the DI ẋ ∈ F (x).

Theorem (G, Gaujal 10)

If the DI associated with f is stable, then the stochastic system is stable.
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Opportunistic routing in wireless networks

An antenna serves mobiles.

Channel condition is varying with time (fading).

Mobile 1

Mobile 2

Mobile 3

Antenna Fading

At each time step, the antenna chooses which user to serve :

knowing the channel condition of everyone.

Goal : find a “good” policy for serving the users.
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Opportunistic routing, flow-level model from (Ayesta et al. 10)

Mobiles can be divided in K classes.
Users of class k arrive at rate λk

At each time step :
a mobile of class k has a channel condition (i.i.d).
The antenna chooses one user j . It is served with rate
µ(class, channel condition)

λ1

...λK
Antenna

µ1i

X (t) = (X1(t) . . .XK (t)) = # users of each class in the system.

Questions :
What is the stability condition of a policy ?

Is there a maximum stable policy ?
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Stability condition

Theorem (Ayesta et al.)

There exists a policy that stabilize the system iff
K∑

k=1

λk
µmax
k

< 1

Consider the policy :

Serve in priority users that are in their best state.

Serve in priority class 1 users, then class 2, etc.

Any tie breaking rule.
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Drift of the stochastic system

When x is small, the
drift is complex.

Example with 2 classes of users and 2 channel conditions.

When x is large, there is a user in its best state with proba. ≈ 1.

If a user of class k in its best state is served, the drift is :

f (x) = (λ1, . . . , λk−1, λk − µmax
k , λk+1, . . . , λK ) = vk .
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Stability of the fluid limit
For, x “large”, the drift is :

The drift f is

The set-valued drift F

v1

v2
v1

v1

conv(v1, v2)

v1

The ODE corresponding to f has no solution.

The DI can be solved in closed form.

Therefore, if
K∑

k=1

λk
µmax
k

< 1, then :

The solution of the DI converges to 0.

Thus, the opportunistic scheduling is stable.
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Limit of the approach

The set of solution of the DI is a super-set of the fluid limits.
Example : three weakly coupled queues (Borst et al. 2008).

Arrival rate at queue i is λi

xi , xj , xk are the numbers of customers present in queues
i 6= j 6= k ∈ {1, 2, 3}, a customer of queue i is served with rate φi (x)

φi (x) =


ai if xj = xk = 0
aij if xj > 0, xk = 0
1 if xj > 0, xk > 0,

where ai ≥ aij ≥ 1.
Stability conditions given by the convex hull (up to a permutation of 1, 2, 3) :

λ1 < 1 and λ2 < λ1 + a23(1− λ1) (also necessary conditions).

+ a linear equation on λ3 stronger than necessary.

The DI has multiple solutions.
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Conclusion

Stochastic approximation to construct fluid limits.

Differential inclusion to handle discontinuity.

Constructive definition of the limit.

Facilitate the computation of closed-form behavior.

Other applications :

Study quantitative properties (mean field approximation).

Need for speed of convergence (OSL, R-OSL).

Hitting time and stochastic approximation.

Extinction time.
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