Stochastic approximation, differential inclusion and stability.

Nicolas Gast $^{\rm 1}$

EPFL

Algo GT 2011 - June 20-21

1. Joint work with Bruno Gaujal (INRIA)

Outline

2 Classical tools for queuing networks

- Lyapounov techniques
- Fluid limits

3 Our approach : drift and differential inclusions

Examples : wireless networks and opportunistic routing

5 Conclusion

Outline

2 Classical tools for queuing networks

- Lyapounov techniques
- Fluid limits

3 Our approach : drift and differential inclusions

4 Examples : wireless networks and opportunistic routing

5 Conclusion

What is stochastic stability?

X(t) is a stochastic system X(t) (e.g. number of customers waiting.)

Stability $\approx X(t)$ does not go to infinity as t goes to infinity.

Stability is a weak property

- needed to have a stationary regime.
- no bound on waiting time.



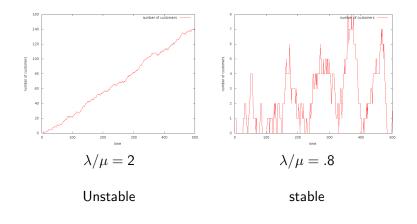
This is stable.

References

Stochastic stability on an example

 $M/M/1\ queue$:

- Arrival rate of customers λ .
- Departure rate μ .



Mathematical definition

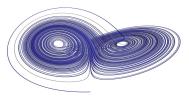
Definition (stability)

Let X(t) be a Markov chain on a discrete space S.

• X(t) is stable if X(t) is positive recurrent (has a stationary distribution).

Example :

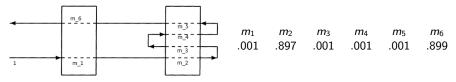
- The ${\rm M}/{\rm M}/{\rm 1}$ queue is stable iff $\lambda/\mu < 1.$
- A stable system can oscillate.



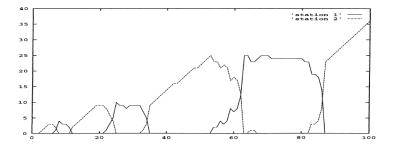
This is stable.

Stability : a difficult problem

Example : reentrant line with FIFO disciplines. Rybko, Stolyar (1992), Daï (1995).



The load on each server is $\rho_1 = \rho_2 = .90$ but :



Outline

2 Classical tools for queuing networks

- Lyapounov techniques
- Fluid limits

3 Our approach : drift and differential inclusions

4 Examples : wireless networks and opportunistic routing

5 Conclusion

Foster's Criteria

Idea : average decrease of the norm for large state implies stability.

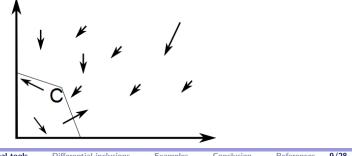
Foster's Criterion (taken from Bramson [2008])

Let X(n), be a Markov chain on which all states communicate. If there is a finite space C s.t.

• $\mathbb{E}\left[\|X(n+1)\| \mid X(n) = x\right] < \infty$ for all $x \in C$

•
$$\mathbb{E}\left[\|X(n+1)\| \mid X(n) = x\right] \le \|x\| - \epsilon \text{ for } x \notin C.$$

Then, X is stable.



Foster's Criteria : example and limits

Example : M/M/1 queue (arrival w. proba. λ , departure w. proba. μ .)

•
$$\mathbb{E}\left[|X(n+1)|X(n)=0\right] = \lambda < \infty$$

•
$$\mathbb{E}[|X(n+1)|X(n) = x] = x + \lambda - \mu \text{ if } x > 0.$$

Thus : λ/μ implies stability. (in that case, there exists simpler methods).

Powerful tool but :

- Hard to find a Lyapounov
- Little intuition on speed of convergence.

10/28

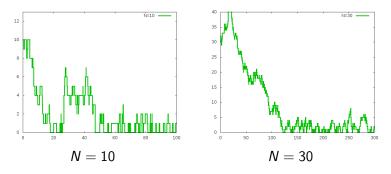
Fluid limit : definition and example

Consider $X^N(t)$:

- Scale the initial state by N.
- Scale the time by $N : X^N(t) = X(N \cdot t)$.

A fluid limit is a limit of $X^N(t)$ as N goes to infinity. Example : M/M/1 queue.

• $X(t) \in \mathbb{N}$ = number of packets in queue.



Fluid limit and stability of queing networks.

Bransom (2008) (generalization of Daï (1995)) showed that

Fluid stability implies stochastic stability for HL.

For head-of-the-line queuing networks :

- Fluid limits are described by differential equations.
- If $\exists c$ such that all solutions of the ODE satisfies :

X(t) = 0 for t > c ||X(0)||,

then the system is stable.

The converse might false (see Bramson (1999)) However :

۲

- restricted to queuing models.
 - Models not valid, e.g. wireless networks (interferences).

Outline

1 What is stochastic stability?

2 Classical tools for queuing networks

- Lyapounov techniques
- Fluid limits

3 Our approach : drift and differential inclusions

4 Examples : wireless networks and opportunistic routing

5 Conclusion

Drift and stochastic approximation

Recall : fluid limit

• behavior when space and time is scaled by
$$N$$
:
 $X^{N}(t + \frac{1}{N}) = \frac{1}{N}X(N \cdot t)$

The drift of a discrete time Markov chain X(n) is :

$$g(x) = \mathbb{E} \left[X(t+1) - X(t) \mid X(t) = x \right].$$

We have
$$X(t+1) = X(t) + \underbrace{g(x)}_{\text{drift}} + \underbrace{\text{noise}}_{\mathbb{E}[\cdot]=0}$$
.

$$X^{N}(t+\frac{1}{N}) = X^{N}(t) + \frac{1}{N}\left(g(N \cdot X^{N}(t)) + \text{noise}\right). \quad (1)$$

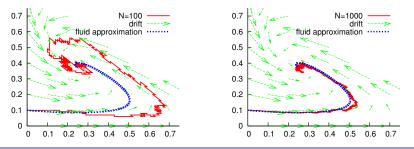
(1) is a stochastic approximation algorithm.

Convergence of stochastic approximation

$$X^{N}(t+\frac{1}{N}) = X^{N}(t) + \frac{1}{N}\left(g(N \cdot X^{N}(t)) + \text{noise}\right). \quad (1)$$

When $\lim_{N\to\infty} g(N \cdot x) = f(x)$ is lipschitz continuous :

• X^N satisfies the ODE $\dot{x} = f(x)$. (started with Robbins and Monro (1951), see also Benaïm (1999).)



Stochastic stability Classical tools Differential inclusions Examples Conclusion References 15/28

Discontinuous drifts

However, most system have discontinuous drift. Example : M/M/1 queue. The drift is :

$$f(x) = \begin{cases} \lambda - \mu & \text{if } x > 0. \\ \lambda & \text{if } x = 0. \end{cases}$$

Problem : $\dot{x} = f(x)$ has no solutions on $[0; \infty)$ starting from x = 1.

Solution : transform the ODE into a differential inclusion (DI) :

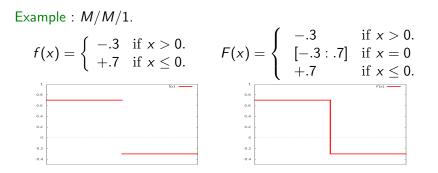
$$\dot{x} \in F(x)$$
 with $F(x) = \begin{cases} \lambda - \mu & \text{if } x > 0. \\ [\lambda - \mu; \lambda] & \text{if } x = 0. \end{cases}$

The DI has a unique solution.

Construction of set valued drift

If f is the drift, then we define F:

$$F(x) = \operatorname{convex_hull}\left(\lim_{n \to \infty} g(N \cdot x^N) \mid x^N \to x \right).$$



Convergence

Theorem (G, Gaujal 10)

Assume that f is bounded, that the variance of the noise is bounded and that F is the set-valued drift. If $X^N(0) \rightarrow x$, then for all T :

$$\inf_{x\in S(x_0)}\sup_{0\leq t\leq T}\left\|X^N(t)-x(t)\right\|\xrightarrow{\mathcal{P}} 0.$$

where $S(x_0) = set$ of solutions of $\dot{x} \in F(x)$ with $x(0) = x_0$.

Generalization of decreasing step-size studied by Benaïm et al. (06).Similar results obtained by Faure and Roth (10).

In words : for any drift f, fluid limits are characterized by the DI $\dot{x} \in F(x)$.

Theorem (G, Gaujal 10)

If the DI associated with f is stable, then the stochastic system is stable.

Stochastic stability

Outline

What is stochastic stability ?

2 Classical tools for queuing networks

- Lyapounov techniques
- Fluid limits

3 Our approach : drift and differential inclusions

Examples : wireless networks and opportunistic routing

5 Conclusion

Stochastic stability Classical tools Differential inclusions Examples Conclusion References 19/28

Opportunistic routing in wireless networks

- An antenna serves mobiles.
- Channel condition is varying with time (fading).

At each time step, the antenna chooses which user to serve :

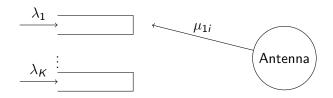
- knowing the channel condition of everyone.
- Goal : find a "good" policy for serving the users.

Opportunistic routing, flow-level model from (Ayesta et al. 10)

- Mobiles can be divided in K classes.
 - Users of class k arrive at rate λ_k
- At each time step :

Questions :

- a mobile of class k has a channel condition (*i.i.d*).
- The antenna chooses one user j. It is served with rate μ (class, channel_condition)



• $X(t) = (X_1(t) \dots X_K(t)) = \#$ users of each class in the system.

• What is the stability condition of a policy?

• Is there a maximum stable policy?

Stochastic stability	Classical tools	Differential inclusions	Examples	Conclusion	References	21/28

Stability condition

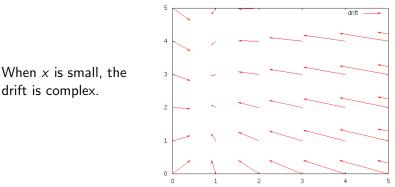
Theorem (Ayesta et al.)

There exists a policy that stabilize the system iff $\sum_{k=1}^{n} \frac{\lambda_k}{\mu_k^{\max}} < 1$

Consider the policy :

- Serve in priority users that are in their best state.
- Serve in priority class 1 users, then class 2, etc.
- Any tie breaking rule.

Drift of the stochastic system



Example with 2 classes of users and 2 channel conditions.

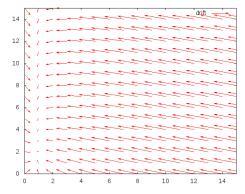
• When x is large, there is a user in its best state with proba. ≈ 1 . If a user of class k in its best state is served, the drift is :

$$f(x) = (\lambda_1, \ldots, \lambda_{k-1}, \lambda_k - \mu_k^{\max}, \lambda_{k+1}, \ldots, \lambda_K) = \mathbf{v}_k.$$

Drift of the stochastic system

Example with 2 classes of users and 2 channel conditions.

When x is small, the drift is complex.



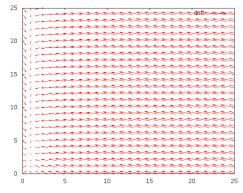
• When x is large, there is a user in its best state with proba. ≈ 1 . If a user of class k in its best state is served, the drift is :

$$f(x) = (\lambda_1, \ldots, \lambda_{k-1}, \lambda_k - \mu_k^{\max}, \lambda_{k+1}, \ldots, \lambda_K) = \mathbf{v}_k.$$

Drift of the stochastic system

Example with 2 classes of users and 2 channel conditions.

When x is small, the drift is complex.

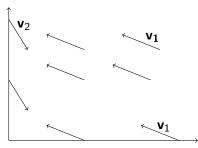


• When x is large, there is a user in its best state with proba. ≈ 1 . If a user of class k in its best state is served, the drift is :

$$f(x) = (\lambda_1, \ldots, \lambda_{k-1}, \lambda_k - \mu_k^{\max}, \lambda_{k+1}, \ldots, \lambda_K) = \mathbf{v}_k.$$

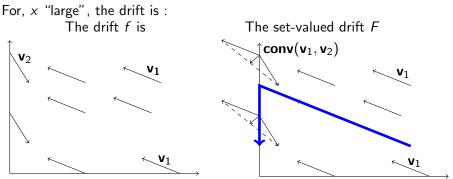
Stability of the fluid limit

For, x "large", the drift is : The drift f is



• The ODE corresponding to *f* has no solution.

Stability of the fluid limit



- The ODE corresponding to f has no solution.
- The DI can be solved in closed form.

Therefore, if
$$\sum_{k=1}^{\kappa}rac{\lambda_k}{\mu_k^{\sf max}} < 1$$
, then :

- The solution of the DI converges to 0.
- Thus, the opportunistic scheduling is stable.

24/28

Limit of the approach

The set of solution of the DI is a super-set of the fluid limits. Example : three weakly coupled queues (Borst et al. 2008).

- Arrival rate at queue i is λ_i
- x_i, x_j, x_k are the numbers of customers present in queues $i \neq j \neq k \in \{1, 2, 3\}$, a customer of queue *i* is served with rate $\phi_i(x)$

$$\phi_i(x) = \left\{ egin{array}{ll} a_i & ext{if } x_j = x_k = 0 \ a_{ij} & ext{if } x_j > 0, x_k = 0 \ 1 & ext{if } x_j > 0, x_k > 0, \end{array}
ight.$$

where $a_i \ge a_{ij} \ge 1$. Stability conditions given by the convex hull (up to a permutation of 1, 2, 3) :

- $\lambda_1 < 1$ and $\lambda_2 < \lambda_1 + a_{23}(1 \lambda_1)$ (also necessary conditions).
- + a linear equation on λ_3 stronger than necessary.

The DI has multiple solutions.

Outline

1 What is stochastic stability?

2 Classical tools for queuing networks

- Lyapounov techniques
- Fluid limits

3 Our approach : drift and differential inclusions

4 Examples : wireless networks and opportunistic routing

5 Conclusion

Conclusion

Stochastic approximation to construct fluid limits.

- Differential inclusion to handle discontinuity.
- Constructive definition of the limit.
- Facilitate the computation of closed-form behavior.

Other applications :

- Study quantitative properties (mean field approximation).
 - Need for speed of convergence (OSL, R-OSL).
- Hitting time and stochastic approximation.
 - Extinction time.

Some references

Paper corresponding to this talk :

- [Gast,Gaujal 10] Markov chains with discontinuous drifts have differential inclusions limits. Application to stochastic stability and mean field approximation. Other references cited :
 - [Benaim et al. 99] Dynamics of stochastic approximation algorithms
 - [Benaïm et al. 06] Stochastic approximations and differential inclusions
 - [Bramson 99] A stable queueing network with unstable fluid model
 - [Bramson 08] Stability of queuing networks
 - [Borst et al. 08] Stability of parallel queueing systems with coupled service rates
 - [Daï 95] On positive Harris recurrence of multiclass queueing networks : a unified approach via fluid limit models
 - [Rybko,Stolyar 92] Ergodicity of stochastic processes describing the operation of open queueing networks
 - [Ayesta et al. 10] Scheduling in a random environment : stability and asymptotic optimality